3.4.20 \(\int \frac {1}{(a+a \cos (c+d x)) \sqrt {\sec (c+d x)}} \, dx\) [320]

3.4.20.1 Optimal result
3.4.20.2 Mathematica [C] (verified)
3.4.20.3 Rubi [A] (verified)
3.4.20.4 Maple [A] (verified)
3.4.20.5 Fricas [C] (verification not implemented)
3.4.20.6 Sympy [F]
3.4.20.7 Maxima [F]
3.4.20.8 Giac [F]
3.4.20.9 Mupad [F(-1)]

3.4.20.1 Optimal result

Integrand size = 23, antiderivative size = 110 \[ \int \frac {1}{(a+a \cos (c+d x)) \sqrt {\sec (c+d x)}} \, dx=-\frac {\sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{a d}+\frac {\sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{a d}+\frac {\sqrt {\sec (c+d x)} \sin (c+d x)}{d (a+a \sec (c+d x))} \]

output
sin(d*x+c)*sec(d*x+c)^(1/2)/d/(a+a*sec(d*x+c))-(cos(1/2*d*x+1/2*c)^2)^(1/2 
)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2 
)*sec(d*x+c)^(1/2)/a/d+(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*Ell 
ipticF(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/a/d
 
3.4.20.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 0.91 (sec) , antiderivative size = 181, normalized size of antiderivative = 1.65 \[ \int \frac {1}{(a+a \cos (c+d x)) \sqrt {\sec (c+d x)}} \, dx=-\frac {4 i \cos ^2\left (\frac {1}{2} (c+d x)\right ) \left (-1-e^{2 i (c+d x)}+\left (1+e^{i (c+d x)}\right ) \sqrt {1+e^{2 i (c+d x)}} \operatorname {Hypergeometric2F1}\left (-\frac {1}{4},\frac {1}{2},\frac {3}{4},-e^{2 i (c+d x)}\right )+e^{i (c+d x)} \left (1+e^{i (c+d x)}\right ) \sqrt {1+e^{2 i (c+d x)}} \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {1}{2},\frac {5}{4},-e^{2 i (c+d x)}\right )\right ) \sqrt {\sec (c+d x)}}{a d \left (1+e^{i (c+d x)}\right )^3} \]

input
Integrate[1/((a + a*Cos[c + d*x])*Sqrt[Sec[c + d*x]]),x]
 
output
((-4*I)*Cos[(c + d*x)/2]^2*(-1 - E^((2*I)*(c + d*x)) + (1 + E^(I*(c + d*x) 
))*Sqrt[1 + E^((2*I)*(c + d*x))]*Hypergeometric2F1[-1/4, 1/2, 3/4, -E^((2* 
I)*(c + d*x))] + E^(I*(c + d*x))*(1 + E^(I*(c + d*x)))*Sqrt[1 + E^((2*I)*( 
c + d*x))]*Hypergeometric2F1[1/4, 1/2, 5/4, -E^((2*I)*(c + d*x))])*Sqrt[Se 
c[c + d*x]])/(a*d*(1 + E^(I*(c + d*x)))^3)
 
3.4.20.3 Rubi [A] (verified)

Time = 0.62 (sec) , antiderivative size = 115, normalized size of antiderivative = 1.05, number of steps used = 11, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.478, Rules used = {3042, 3717, 3042, 4307, 3042, 4274, 3042, 4258, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\sqrt {\sec (c+d x)} (a \cos (c+d x)+a)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )}dx\)

\(\Big \downarrow \) 3717

\(\displaystyle \int \frac {\sqrt {\sec (c+d x)}}{a \sec (c+d x)+a}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{a \csc \left (c+d x+\frac {\pi }{2}\right )+a}dx\)

\(\Big \downarrow \) 4307

\(\displaystyle \frac {\sin (c+d x) \sqrt {\sec (c+d x)}}{d (a \sec (c+d x)+a)}-\frac {\int \frac {a-a \sec (c+d x)}{\sqrt {\sec (c+d x)}}dx}{2 a^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\sin (c+d x) \sqrt {\sec (c+d x)}}{d (a \sec (c+d x)+a)}-\frac {\int \frac {a-a \csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{2 a^2}\)

\(\Big \downarrow \) 4274

\(\displaystyle \frac {\sin (c+d x) \sqrt {\sec (c+d x)}}{d (a \sec (c+d x)+a)}-\frac {a \int \frac {1}{\sqrt {\sec (c+d x)}}dx-a \int \sqrt {\sec (c+d x)}dx}{2 a^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\sin (c+d x) \sqrt {\sec (c+d x)}}{d (a \sec (c+d x)+a)}-\frac {a \int \frac {1}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx-a \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}dx}{2 a^2}\)

\(\Big \downarrow \) 4258

\(\displaystyle \frac {\sin (c+d x) \sqrt {\sec (c+d x)}}{d (a \sec (c+d x)+a)}-\frac {a \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\cos (c+d x)}dx-a \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\cos (c+d x)}}dx}{2 a^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\sin (c+d x) \sqrt {\sec (c+d x)}}{d (a \sec (c+d x)+a)}-\frac {a \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx-a \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{2 a^2}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {\sin (c+d x) \sqrt {\sec (c+d x)}}{d (a \sec (c+d x)+a)}-\frac {\frac {2 a \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}-a \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{2 a^2}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {\sin (c+d x) \sqrt {\sec (c+d x)}}{d (a \sec (c+d x)+a)}-\frac {\frac {2 a \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}-\frac {2 a \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}}{2 a^2}\)

input
Int[1/((a + a*Cos[c + d*x])*Sqrt[Sec[c + d*x]]),x]
 
output
-1/2*((2*a*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]] 
)/d - (2*a*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]] 
)/d)/a^2 + (Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(d*(a + a*Sec[c + d*x]))
 

3.4.20.3.1 Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3717
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x 
_)]^(n_.))^(p_.), x_Symbol] :> Simp[d^(n*p)   Int[(d*Csc[e + f*x])^(m - n*p 
)*(b + a*Csc[e + f*x]^n)^p, x], x] /; FreeQ[{a, b, d, e, f, m, n, p}, x] && 
  !IntegerQ[m] && IntegersQ[n, p]
 

rule 4258
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(b*Csc[c + d*x] 
)^n*Sin[c + d*x]^n   Int[1/Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && 
 EqQ[n^2, 1/4]
 

rule 4274
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + 
(a_)), x_Symbol] :> Simp[a   Int[(d*Csc[e + f*x])^n, x], x] + Simp[b/d   In 
t[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]
 

rule 4307
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)/(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_)), x_Symbol] :> Simp[(-b)*d*Cot[e + f*x]*((d*Csc[e + f*x])^(n - 1)/(a*f* 
(a + b*Csc[e + f*x]))), x] + Simp[d*((n - 1)/(a*b))   Int[(d*Csc[e + f*x])^ 
(n - 1)*(a - b*Csc[e + f*x]), x], x] /; FreeQ[{a, b, d, e, f, n}, x] && EqQ 
[a^2 - b^2, 0]
 
3.4.20.4 Maple [A] (verified)

Time = 2.93 (sec) , antiderivative size = 198, normalized size of antiderivative = 1.80

method result size
default \(-\frac {\sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \left (F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )+2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-\left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )\right )}{a \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(198\)

input
int(1/(a+cos(d*x+c)*a)/sec(d*x+c)^(1/2),x,method=_RETURNVERBOSE)
 
output
-((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(cos(1/2*d*x+1/2* 
c)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(Elliptic 
F(cos(1/2*d*x+1/2*c),2^(1/2))+EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))+2*sin 
(1/2*d*x+1/2*c)^4-sin(1/2*d*x+1/2*c)^2)/a/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2 
*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+ 
1/2*c)^2-1)^(1/2)/d
 
3.4.20.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.09 (sec) , antiderivative size = 184, normalized size of antiderivative = 1.67 \[ \int \frac {1}{(a+a \cos (c+d x)) \sqrt {\sec (c+d x)}} \, dx=\frac {{\left (-i \, \sqrt {2} \cos \left (d x + c\right ) - i \, \sqrt {2}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + {\left (i \, \sqrt {2} \cos \left (d x + c\right ) + i \, \sqrt {2}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + {\left (-i \, \sqrt {2} \cos \left (d x + c\right ) - i \, \sqrt {2}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + {\left (i \, \sqrt {2} \cos \left (d x + c\right ) + i \, \sqrt {2}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + 2 \, \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{2 \, {\left (a d \cos \left (d x + c\right ) + a d\right )}} \]

input
integrate(1/(a+a*cos(d*x+c))/sec(d*x+c)^(1/2),x, algorithm="fricas")
 
output
1/2*((-I*sqrt(2)*cos(d*x + c) - I*sqrt(2))*weierstrassPInverse(-4, 0, cos( 
d*x + c) + I*sin(d*x + c)) + (I*sqrt(2)*cos(d*x + c) + I*sqrt(2))*weierstr 
assPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) + (-I*sqrt(2)*cos(d*x + 
c) - I*sqrt(2))*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x 
+ c) + I*sin(d*x + c))) + (I*sqrt(2)*cos(d*x + c) + I*sqrt(2))*weierstrass 
Zeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) + 2 
*sqrt(cos(d*x + c))*sin(d*x + c))/(a*d*cos(d*x + c) + a*d)
 
3.4.20.6 Sympy [F]

\[ \int \frac {1}{(a+a \cos (c+d x)) \sqrt {\sec (c+d x)}} \, dx=\frac {\int \frac {1}{\cos {\left (c + d x \right )} \sqrt {\sec {\left (c + d x \right )}} + \sqrt {\sec {\left (c + d x \right )}}}\, dx}{a} \]

input
integrate(1/(a+a*cos(d*x+c))/sec(d*x+c)**(1/2),x)
 
output
Integral(1/(cos(c + d*x)*sqrt(sec(c + d*x)) + sqrt(sec(c + d*x))), x)/a
 
3.4.20.7 Maxima [F]

\[ \int \frac {1}{(a+a \cos (c+d x)) \sqrt {\sec (c+d x)}} \, dx=\int { \frac {1}{{\left (a \cos \left (d x + c\right ) + a\right )} \sqrt {\sec \left (d x + c\right )}} \,d x } \]

input
integrate(1/(a+a*cos(d*x+c))/sec(d*x+c)^(1/2),x, algorithm="maxima")
 
output
integrate(1/((a*cos(d*x + c) + a)*sqrt(sec(d*x + c))), x)
 
3.4.20.8 Giac [F]

\[ \int \frac {1}{(a+a \cos (c+d x)) \sqrt {\sec (c+d x)}} \, dx=\int { \frac {1}{{\left (a \cos \left (d x + c\right ) + a\right )} \sqrt {\sec \left (d x + c\right )}} \,d x } \]

input
integrate(1/(a+a*cos(d*x+c))/sec(d*x+c)^(1/2),x, algorithm="giac")
 
output
integrate(1/((a*cos(d*x + c) + a)*sqrt(sec(d*x + c))), x)
 
3.4.20.9 Mupad [F(-1)]

Timed out. \[ \int \frac {1}{(a+a \cos (c+d x)) \sqrt {\sec (c+d x)}} \, dx=\int \frac {1}{\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}\,\left (a+a\,\cos \left (c+d\,x\right )\right )} \,d x \]

input
int(1/((1/cos(c + d*x))^(1/2)*(a + a*cos(c + d*x))),x)
 
output
int(1/((1/cos(c + d*x))^(1/2)*(a + a*cos(c + d*x))), x)